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In Situ Propellant & Consumable Production (ISPCP)

Driving Outcomes

Ensuring American
global leadership in
Space Technology

* Lunar
Exploration
building to
Mars and new
discoveries at
extreme
locations

* Robust
national space
technology
engine to meet
national needs

= U.5. aconomic
growth for
space industry

= Expanded
commercial
enterprise in
space

Go

Raopid, Safe, &

Efficient Space -

. OUTCOMES -

* Enable Human Earth-to-Mars Round Trip mission durations less than
750 days.

= Enable rapid, low cost delivery of robotic payloads to Moon, Mars and

beyond.

Enable reusable, safe launch and in-space propulsion systems that

Transportation reduce launch and operational costs/complexity and leverage potential
destination based ISRU for propellants.

Land |

» Enable Lunar and Mars Global Access with ~20t payloads to support
Expanded human missions.
Access to = lLand Payloads within 50 meters accuracy while also avoiding local
Diverse Surface landing hazards.
Destinations

= Conduct Human/Robotic Lunar Surface Missions in excess of 28 days
Live without resupply.
— = Conduct Human Mars Missions in excess of 800 days including transit
Sustainable | withoutresupply. | e enns

Living and
Working
Farther from
Earth

= Provide greater than 75% of propellant and water/air consumables from 3

local resources for Lunar and Mars missions.
" "Enable Surface habitats that utilize local construction resources. ’
= Enable Intelligent robotic systems augmenting operations during crewed

and un-crewed mission segments.

Explore

Transformotive
Missions and
Discoveries

= Enable new discoveries at the Moon, Mars and other extreme locations.

» Enable new architectures that are more rapid, affordable, or capable
than previously achievable.

= Enable new approaches for in-space servicing, assembly and
manufacturing.

= Enable next generation space data processing with higher performance
computing, communications and navigation in harsh deep space

environments.

= Resource Mapping/Estimation: Enable

global and detailed local and subsurface
mapping of lunar resources and terrain,
especially for water in permanently
shadowed craters, for science, future
exploration, and commercial use

Oxygen Extraction: Enable extraction
and production of oxygen from lunar
regolith to provide 10’s of metric tons per
year, for up to 5 years with little human
involvement and maintenance, for
reusable surface and ascent/descent
transportation.

Water Mining: Enable cis-lunar
commercial markets through extraction of
water resources to provide 100’s of metric
tons of propellant per year for reusable
landers and cis-lunar transportation
systems



Lunar Resources

Lunar Regolith Polar Water/Volatiles

= >40% Oxygen by mass » LCROSS impact estimated 5.5 wt% water along with other volatiles
~ Silicate minerals make up over 90% of the Moon = Green and blue dots show positive results for surface water ice and
= Regolith temperatures <110 K using orbital data.
— Mare: Basalt (plagioclase, pyroxene, olivine) -

Spectral modeling shows that some ice-bearing pixels may contain
~30 wt % ice (mixed with dry regolith)
» Without direct measurements, form, concentration,

— Highland/Polar: >75% anorthite, iron poor
= Pyroclastic Glass

= KREEP (Potassium, Rare Earth Elements, Phosphorous) and distribution of water is unknown
= Solar Wind Implanted Volatiles c""g""“""
plagioclase North Pole South Pole Hs0 5.5
nonmare rock classification /\ regoliths 180 co 0.70
A anorthosite ’A \ 1 Apolic 11 7 Apolio 17
NA noritic (gabbroic} anorthosite /NA 7“\ 2 Apollo 12 ¥ Lfnaom e s
TA troctolitic anorthosite 4 Apollo 14 H L 20
AN anorthositic norite (gabbro) /é (}EJ TA N 5 Agnllo 15 o LEEZ 24 H2S 174
AT  anorthositic troctolite 6 Apollo 16 Ca 0.20
N norite (gabbro) AN w‘ \ feldspathic | i
ON olivine norite (gabbro} 7 W[ AT A M feldspathic lunar meteorites Hg 0.24
T troctolite / / ‘\
P pyroxenile Vi T, N NH; 0.31
Pe peridolite g N\
D dunite = i / s dominated Mg i
. _soils ominated \
KREEP " by mare basalt \ SO P
Vs and volcanic glass “ . CsHy 0.27
/ \
£ b ON ' A co, i
/ / orange ‘ \'-\ / = CH,0H 0.15
A 7 9"0._55 % 330 3 S 30
6 i soil “\‘ o nq—o cH-ﬂ- 0.03
\ 60 10 160 230 200 »>320
4\
P Pe {;’b‘\\ Ice exposures constrained by M? LOLA, and Diviner Ice exposures constrained by M?, LOLA, Diviner, OH 0.00
i \’ /r‘ \ and LAMP Hzo {adsﬂm] 0.004 -0.002
pyroxene ivi . . . . .
Y olivine Li et. al, (2018), Direct evidence of surface exposed water ice in Na

From New Views of the Moon

the lunar polar regions

Table courtesy of Tony Colaprete
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Lunar Surface ISPCP Capabilities

‘Prospect to Product’

Resource Assessment — Looking for Water/Minerals Excavation & Regolith Processing
T for O, & Metal Production

-"-"‘"-'"‘}-‘—“T = Z—‘; ——— e ol P
Global Assessment ‘ Local Assessment

Consumable

Mining Polar Water & Volatiles Users

o h‘lilv;bitats & |
Consumable Storage Life Support
& Delivery (CFM) :

Landing Pads, Berms, Roads, Shielding
and Structure Construction (AMSM)

- €
Landers & Hoppers

%'g.



ISPCP Functional Breakdown

= All Functions have been mapped to interactions with other STPs
» Functions used as starting point for technology and gap assessments
» Emphasis placed on Bolded Functions

. . s . Resource Processing for Resource Processing for
Destination Reconnaissance and Resource Acquisition, Isolation, . . . .
. Production of Mission Production of Manufacturing and
Resource Assessment and Preparation ’
Consumables Construction Feedstock
e Site Imaging/Terrain Mapping e Resource Excavation & » Resource Storage and Feed e |n Situ Excavation and
¢ Instruments for Resource Acquisition To/From Processing Reactor Movement for Construction
Assessment * Resource Preparation before * Regolith Processing to Extract ® Resource Preparation for
e Orbital Resource Evaluation Processing Oxygen Construction Feedstock
e Local Surface Resource * Resource Transfer * Regolith Processing to Extract e Material transfer
Evaluation e Resource Delivery from Mine Water e Resource Processing to Extract
* Resource/Terrain/Environment Site and Removal e Carbon Dioxide Processing Metals/Silicon
Data Fusion and Analyses e Water Processing * Resource-Trash/Waste Gas
e Instrumentation to Characterize Processing to Produce
Processing Performance Methane/Plastics

* Product/Reactant Separation

e Contaminant Removal from
Reagents/Products

* 1)

Shared Interest/Responsibilities with Advanced Manufacturing Structures, and Manufacturing (AMSM) STP
— PT Materials and Manufacturing — J. Vickers
— PT Materials, Structures, and Nanotechnology — M. Hilburger

Cross Cutting

* Planetary Simulants
for Test & Verification

* Planetary
Regolith/Environment
Test Chambers



ISRU Functional Block Diagrams
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In Space Manufacturing
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ISRU Functional And Gap Connectivity to Other STPs
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1.1 Site Imaging/Terrain Mapping 2 3.1 Resource Storage and Feed To/From Processing Reactor 1
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Instruments for Physical/Geotechnical Characterization 1 3.3 Regolith Processing to Extract Water
Instruments for Mineral/Chemical Characterization 1 Enclosed reactor 2
Instruments for Volatile Characterization 4 Subsurface heating/vapor collection 2
13 Orbital Site and Resource Evaluation 2 6 3.4 Carbon Dioxide Processing
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Autonomy for Resource Delivery/Removal 2 3 4.2 Resource Preparation for Construction Feedstock
Comm&Nav for Resource Delivery/Removal 6 Shape/Size Manipulation 1
Power for Resource Delivery/Removal Constituent Manipulation 1
Feedstock Quality Measurement 1
43 Material transfer 2
4.4 Resource Processing to Extract Metals/Silicon 2
4.5 Trash/Waste Processing
To Plastic 2 2




In Situ Propellant & Consumable Production (ISPCP)
Phases of Evolution and Use

Demo Pilot Crewed Ascent | Full Descent Single Human Commercial
Scale Plant Vehicle* Stage* Stage Mars Cis-Lunar
3 Stage Arch to NRHO to NRHO** | Transportation' TransportationA
Timeframe days to months | 6 mo - 1 year 1 mission/yr 1 mission/yr 1 mission/yr per year per year
. 1 mt O, Pilot
b /System M | 10's kg to low 13-25mt| 1400 to 2400 to Not Defined Not Defined 29,000 to
emo/system Mass 100's kg 2T a2 MEICE L 5500 kg 3700 kg 41,000 kg
Mining
4 1 4
Amount O, 10's kg 1000 kg ,000 to 8,000 to 30,000 to 85,000 to 00,000 to
6,000 kg 10,000 kg 50,000 kg 267,000 kg 2,175,000 kg
10' t 1,400 t 5,500 t 23,000 t 50,000 t
Amount H, _S gms to 125 kg ’ ° ’ ° ’ ° ’ ©
kilograms 1,900 kg 9,100 kg 33,000 kg 275,000 kg
Power for O, in NPS 100's W ~3 KW 20 to 32 KW 40 to 55 KW N/A N/A N/A
Power for H,O in PSR 100's W ~2 KW ~25 KW 14 to 23 KW 150 to 800 KW
Power for H,0 to ~4 KW ~48 KWe | 55 to 100 KWe 370 to
0,/H, in NPS 2,000 KWe

NPs = Near Permanent Sunlight

PSR = Permanently Shadowed Region

*Estimates from rocket equation and mission assumptions

**Estimates from J. Elliott, "ISRU in Support of an Architecture for a Self-Sustained Lunar Base "

' Estimate from C. Jones, "Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign"

" Estimate from "Commercial Lunar Propellant Architecture" study

" Electrical power generation and product storage mass notincluded

» Table use best available studies and commercial considerations to guide development requirements/FOMs

= Table provides rough guide to developers and other surface elements/Strategic Technology Plans for interfacing with ISRU




Lunar ISRU Strategy: Leader/Follower

'MD has a leader -follower-':,t.h-de'ﬁe;-of,'ol-r UL T
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Pilot Consumable Production

“ 5 Follow The Natural Resources: Sustainable Exploration:
Sub-sy S Demonstrat:ons ln’v estcg e, Demonstrations of systems for extraction and Scalable Pilot - Systenfs demonstrating
e e, apgiinalyze igs enwronmentf @ processing of raw materials for future mission production of consumables from in-situ
“in "" Wi ’and, ut:ihzatton : consumables production and storage. resources in order to better support
: R < e sustained human presence.
!
|
| Oxygen from
5 Lunar Simulant Volatiles Investigation _
| ke Ground Demos Polar Exploration Rover Scalable Pilot - ISRU
High-fidelity (VIPER) Systems for Copsumable
~ Simulant | ISRU Subsystem Production
" Production  Polar Resources Ice Y Consumables Extraction |
Mining Experiment (‘ﬁ Demos

(Prime-1) on CLPS
CLPS Drill
Down Select

X



Exploratory Evaluation of Polar Resources

Comm. for line of
site from lander

(Mg

@ Comm. relay for non-line
| of site from lander

(1) Ejectable/deployable payloads into PSR during descent/fly-over: Payloads are short-lived stationary or mobile assets
@ Ejectable/deployable payloads into PSR after landing near PSR: Payloads are short-lived stationary or mobile assets
@ Payloads deployed after landing next to PSR. Communication from orbit, lander, or relay deployed at PSR rim.

@ Land directly in PSR. Communication from lander. Payload is attached to lander or deployable for short duration operation

Landing Options
= |n PSR
= On edge/rim of PSR

Image interior of PSR

during descent/fly-over

T

Power Options

Batteries
Power Beaming
Power Cables

Landing Options Power Options
* In PSR or in shadowed crater = Nuclear reactor, batteries on rover
= On edge/rim of PSR = Advanced RTG on rover with batteries

= Solar arrays in sunlight, batteries on rover
= Solar arrays in sunlight, fuel cell on rover

Communication & Navigation Options for Rover

= Orbital relay to Earth via Gateway or communication satellite

= Line of site or Non-line of site communication relays from rover-to-lander,
with lander-to-Earth direct or thru relay

Note: Need near continuous communications to allow for tele-operation
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ISRU Concepts of Operation - Ice Mining

Currently Low TRL and Significant Resource Unknowns

= Three main drivers for Water Mining Architecture viability In Sunlit Region; Crater Rim
1. Method of Water Mining
2. Method of Power in Crater
3. Method of Water removal from Crater

= Application of Mining Technologies are highly dependent on:
— Resource Depth Access: How deep the water resource can be for a given concept to work.
— Spatial Resource Definition: How homogenous is the resource

i

— Resource Geotechnical Properties: How hard and porous is the icy regolith In Permanently Shadowed Region
— Volatiles Retention: How much of the volatiles are captured vs lost to the environment. A. Ceritrai Water Exiraciion
— Material Handling: How much interaction is required with the regolith. with E{févat'on Erotasaths & Srarsig

Preliminary Assessment | —
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o 5 2 f access definition retention andiing '%%
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Coring Auger X | X Laboratory Deep (m) Meters High Moderate />}9 A o Q (_0 (9‘
hardware S Ry AO o = =) Power in PSR for
‘ o P Y, 5 Processing &
Heated Dome X | Concept Study Surface Meter High Low 6} Qﬁ Q. ch £
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ISRU Concepts of Operation — Oxygen (Metal) Extraction

TRL 2 to 5 Depending on the Process/Technology

Communication Defined + o Implements
resource for Excavation site
Navigation  collection — Removable / Exchangeable o
‘ Aid — Common structure, data, electrical interface
Power System 7 Plan
y U) . —7 Excavation
_ S Pattern
‘ ——
Resource D TBD m A
Processor N - +
\ ~
Product I:)Resourt(_:e \ o /‘ TBD m
Storage reparation TN N . . .
g TBD M- oy High Traction Mobility Platform
Waste Dump site - Removable/ Exchangeable Parts
- Common motors/parts with Implements
Functions Options
. . . /M. _s"v» =Unprepared path
Traverse back and forth from desired  Smart control and sensors on rover: it selects its own path and avoids obstacles

——» = Prepared path

ints: + Path sel n Earth, rover follow h: internal nav or external n
endpoints: plant, resource zone, dump zone ath selected on Earth, rover follows pat ternal nav or external beacons TBD = 100 10 1000 m

+ Patterns / locations selected on Earth
Rover selects location for drilling/excavation | « | ocation determined as rover arrives based on past knowledge and site survey
* Rover goes to location: internal nav, external beacons, and/or imaging/LIDAR

Device interacts with soiliregolith * Operate extractiqn device depending on material: drill, auger, downhole scoop, bucket-wheel/drum, ripper, etc
* Pre-planned motions, force-feedback autonomous, human controlled.

» Locates and delivers soil/regolith for processing; Locates and receives spent regolith
Rover interacts with ISRU Plant  Locates dirty water transfer connection for On-rover soil processing
» Locates and connects to charging port for battery or fuel cell resupply

what the others are doing

multiple assets
= Smart Platforms — Each is aware of

= Central Control — Commands

» Pre-established operating conditions and timelines

ISRU Plant processes regolith . . . . . .
P J * Regolith pre/post evaluation for process efficiency evaluation and adjustment




ISPCP Capability Gaps

Resource Assessment Capability Gaps

= Surface features and geotechnical data on regolith outside and inside permanently shadowed craters (PSRs)

» Understanding of water and contaminants as a function of depth and areal distribution

» Understanding of subsurface water/volatile release with heating

» Resolution of hydrogen and subsurface ice at <10’s m scale (or less) for economic assessment & mine planning (orbital/surface)
» Instrument for polar regolith sample heating and released volatile characterization (minimum loss during transfer/evaluation)

» Long duration operations at <100 K temperatures and lunar vacuum

= Traversibility inside and in/out of PSRs

» Increased autonomy and better communications into PSRs

» Long-duration mobile polar resource assessment operations (nuclear or power beaming)

Mining Polar Water Capability Gaps

= Limited knowledge/understanding of polar water depth, distribution, concentration to at least 1 m below the surface and multiple sq km.
= Limited knowledge/understanding of regolith properties within PSR

» Feasibility and operation of downhole ice/water vaporization and collection in cold-trap under lunar PSR conditions

= Feasibility and operation icy regolith transfer and processing in reactor under lunar PSR conditions

= Other volatile capture and separation; contaminant removal

= Water electrolysis, clean-up, and quality measurement for subsequent electrolysis or drinking (10,000’s kg)

= Long-term operation under lunar PSR environmental conditions (100’s of days, 10,000’s kg of water)

= Electrical power & Thermal energy in PSRs for ice mining/processing (10’s of KWs)

Oxygen Extraction Capability Gaps

= Increase scale of regolith processing by 1 to 3 orders to reach minimum of 10 mT O,/yr (depending on method)

» Increase duration operation under lunar environmental conditions (100’s of days, 10,000’s kg of O,)

= Long-life, regolith transfer (100’s mT) and low leakage regolith inlet/outlet valves (10,000’s cycles)

= Deployable large scale solar collection/thermal energy transfer for regolith melting

= Regenerative oxygen clean-up for direct oxygen production (10,000’s kg)

= Water electrolysis, clean-up, and quality measurement for subsequent electrolysis or drinking (10,000’s kg)

= Autonomous process monitoring, including measuring mineral properties/oxygen content before and after processing




SBIRs are Important to Fill ISRU Gaps

Recent Solicitation Topics and Selections
SBIR 2020

Solar concentrators for O2/Construction

= Solar Concentrator Oxygen Reactor with Continuous Heating - Blueshift

Lunar Ice Mining

= Thermal Management System for Ice Miners — Advanced Cooling Technologies

= ISRU Collector of Ice in the Cold Lunar Environment — Paragon Space Development
= Lunar Ice Mining Using a Heat-Assisted Cutting Tool — Sierra Lobo

Novel O2 Extraction

= lonic Liquid-Assisted Electrochemical Extraction of Oxygen — Faraday Technology

= Molten Regolith Electrolysis — Lunar Resources

SBIR 2019

Solar concentrators for O2/Construction

= Deployable Solar Concentrator - Opterus Research

= Solar Concentrator for Lunar Applications — Physical Sciences*
Molten Oxide Electrolysis

Beneficiation/Size Sorting

= Size Sorted Regolith Systems — Grainflow Dynamics

= Payloads for Lunar Resources: Volatiles

= Lunar Exploration Gas Spectrometer — Pioneer Astronautics

= NeuRover — Radiation Detection Technologies*

SBIR 2018

Mars Atmosphere Collection and Separation

= Liquid Sorption Pump — Pioneer Astronautics*

= Gas Inlet Sensor for Measuring Dust Particle Size — Southwest Sciences

Carbon Dioxide Processing

= Room Temperature Electrolysis for O2 Generation — Dioxide Materials

» Redox Tolerant Cathode for SOE Stacks — OxEon*

= Highly Efficient Separation and Recirculation of Unreacted CO2 — TDA Research

» Dehydration Resistant and Dimensionally Stable High Performance Membrane — Giner

= Humidity Monitor for ISRU on Mars — Intelligent Optical Systems

Lunar Resources: Volatiles - Small Payloads for Lunar Mission

= High Resolution Scanning of Sub-Surface Liquid Water with Mobile Neutron
Spectrometer — Radiation Detection Technologies

*= Phase Il award

Success Story: Infusion of Multiple SBIR Derived Subsystems Into

In-Situ Resource Utilization (ISRU) Analog Field Test
2009 Phase Ill — Carbothermal Reduction of Regolith, Orbital Technologies Corp., to be completed 9/30/2010

2001 & 2002 Phase I's — Carbothermal Reduction of Regolith, Orbital Technologies Corp., completed 4/30/2002, 7/30/2003
2006 & 2009 Phase Il & lll — Solar Concentrator, Physical Sciences Inc., completed 4/21/2009 (111} & to be 09/28/2010 (1)
2009 Phase Il & IPP — Pneumatic Regolith Transport, Honeybee Robotics, Phase Il completed 5/30/20089, IPP on 2/26/2010
2007 Phase 1l & lll- LO5/CH, Thruster, WASK, completed 2009

Dust to Thrust — End-to-end processing and use of lunar derived oxygen

Constellation Application:

CxP Need: Oxygen Production from Lunar Regolith &
Surface Construction of Landing Pads

Vehicle Elements: Lunar Surface Systems Qutpost

ETDP Project: In-Situ Resource Utilization (ISRU) Project

Pneumatic Regolith Carbothermal Solar Concentrator
Transport

* 17 test fires, with reliable * 0.6—0.7 kg per * 9.5 to 10% oxygen * Upto 1750 C to tephra surface

ignition despite dusty field minute transfer; extraction efficiency; and 54 to 60% efficiency even
environment 99% material complete regeneration of with non-optimum primary

* QOperated on oxygen removal from methane reactant; water mirrors and fiber optics (to
produced from regolith pneumatic gas collected for processing reduce cost)
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